Group Pandas Dataframe & Validate With Condition
Dataframe: id Base field1 field2 field3 1 Y AA BB CC 1 N AA BB CC 1 N AA BB CC 2 Y D
Solution 1:
Use custom function:
deff(x):
#boolena mask for compare Y
mask = x['Base'] == 'Y'#check multiple Y by sum of Truesif mask.sum() > 1:
x['Error'] = 'more than 1 base Y found for id:{}'.format(x.name)
else:
#remove columns for not comparing with not equal
cols = x.columns.difference(['Base','product'])
mask1 = x[cols].ne(x.loc[mask, cols])
#if difference get columns names by dotif mask1.values.any():
vals = mask1.dot(mask1.columns + ', ').str.rstrip(', ') + ' mismatch with base'
x['Error'] = np.where(mask, 'Base: Y', vals)
else:
x['Error'] = np.where(mask, 'Base: Y', 'Pass')
return x
df = df.groupby(level=0).apply(f)
print (df)
product Base field1 field2 field3 Error
id1 A Y AA BB CC Base: Y
1 B N AA BB CC Pass
1 C N AA BB CC Pass
2 D Y DD EE FF Base: Y
2 E N OO EE WT field1, field3 mismatch with base
2 F N DD JQ FF field2 mismatch with base
3 G Y MM NN TT more than 1 base Y found forid:33 H Y MM NN TT more than 1 base Y found forid:33 I N MM NN TT more than 1 base Y found forid:3
Sample DataFrame:
df = pd.DataFrame({'id': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'product': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
'Base': ['Y', 'N', 'N', 'Y', 'N', 'N', 'Y', 'Y', 'N'],
'field1': ['AA', 'AA', 'AA', 'DD', 'OO', 'DD', 'MM', 'MM', 'MM'],
'field2': ['BB', 'BB', 'BB', 'EE', 'EE', 'JQ', 'NN', 'NN', 'NN'],
'field3': ['CC', 'CC', 'CC', 'FF', 'WT', 'FF', 'TT', 'TT', 'TT']})
df = df.set_index('id')
print (df)
product Base field1 field2 field3
id
1 A Y AA BB CC
1 B N AA BB CC
1 C N AA BB CC
2 D Y DD EE FF
2 E N OO EE WT
2 F N DD JQ FF
3 G Y MM NN TT
3 H Y MM NN TT
3 I N MM NN TT
Post a Comment for "Group Pandas Dataframe & Validate With Condition"