Skip to content Skip to sidebar Skip to footer

Print Specific Rows That Are Common Between Two Dataframes

i have a dataframe (df1) like this id link 1 google.com 2 yahoo.com 3 gmail.com i have another dataframe(df2) like this: id link numberOfemployees

Solution 1:

You could try this simple solution:

df2[df2.link.isin(df1.link)]

Solution 2:

what you need is pd.merge take a look at documentation here

import pandas as pd
df1 = pd.DataFrame(
    {'id': [1, 2, 3], 'link': ["google.com", "yahoo.com", "gmail.com"]})
df2 = pd.DataFrame({'id': [1, 2, 3, 4, 5, 6],
                    "link": ["linkedin.com","facebook.com","gmail.com","google.com","twitter.com","yahoo.com"],
                    "numberOfEmployees": [15,70,90,1000,155,2]})

df1.merge(df2, on="link", suffixes=('_left', '_right'))
------------------------------------------------------
|   |id_left |  link    |id_right | numberOfEmployees|
|---|--------|----------|---------|------------------|
|0  |1       |google.com|   4     |   1000           |
|1  |2       |yahoo.com |   6     |   2              |
|2  |3       |gmail.com |   3     |   90             |
------------------------------------------------------

Post a Comment for "Print Specific Rows That Are Common Between Two Dataframes"