Skip to content Skip to sidebar Skip to footer

Create New Sheet With Sums Of Specific Column For Each File In Directory Of Multiple Xlsx Files

I have many Excel files in a directory with the same structure for each file -- for example the data below could be test1.xlsx: Date Type Name Task Subtask

Solution 1:

I would collect all your data frames into one list and then concatenate them in one shot - it should be much faster:

import os
import glob
import pandas as pd

def merge_excel_to_df_add_filename(flist, **kwargs):
    dfs = []
    for f in flist:    
        df = pd.read_excel(f, **kwargs)
        df['file'] = f
        dfs.append(df)
    return pd.concat(dfs, ignore_index=True)

fmask = os.path.join('/path/to/excel/files', '*.xlsx')
df = merge_excel_to_df_add_filename(glob.glob(fmask),
                                    skiprows=4,
                                    index_col=None,
                                    na_values=['NA'])
g = df.groupby('file')['Hours'].agg({'Hours': ['sum','mean']}).reset_index()
# rename columns
g.columns = ['File_Name', 'sum of hours', 'average hours']
# write result to Excel file
g.to_excel('result.xlsx', index=False)

Solution 2:

While you reading file into memory you should remeber filename you are currently processing:

all_data = pd.DataFrame()
for f in glob.glob("path/*.xlsx"):
    df = pd.read_excel(f, skiprows=4,index_col=None, na_values=['NA'])
    df['filename'] = f
    all_data = all_data.append(df,ignore_index=True)

task_output = all_data.groupby(['filename', "Task","Subtask"])["Hours"].agg([np.sum,np.mean])   

Post a Comment for "Create New Sheet With Sums Of Specific Column For Each File In Directory Of Multiple Xlsx Files"