Find Min Value Column And Min Value Column Name In Python DataFrame
I have a matrix like below and I need to create 2 more columns with minimum value from columns COL01-04 and name of that column (exluding NaN): In[1]: matrix Out[1]: ID CO
Solution 1:
Use DataFrame.min
and DataFrame.idxmin
with axis=1
for check values per rows:
c = ['COL01', 'COL02', 'COL03', 'COL04']
matrix[c] = matrix[c].apply(lambda x: pd.to_numeric(x, errors='coerce'))
matrix['Min_val'] = matrix[c].min(axis=1)
matrix['Min_col'] = matrix[c].idxmin(axis=1)
Or for new columns use DataFrame.assign
:
matrix = matrix.assign(Min_val = matrix[c].min(axis=1), Min_col=matrix[c].idxmin(axis=1))
print (matrix)
ID COL01 COL02 COL03 COL04 Min_val Min_col
0 1 NaN 1662 1583.0 1697.40 1583.0 COL03
1 2 NaN 1006 1476.0 1018.44 1006.0 COL02
2 3 1452.0 1487 2197.5 1516.27 1452.0 COL01
3 4 NaN 1554 2298.0 1585.62 1554.0 COL02
Solution 2:
you can try this :
def get_col(sr):
name=sr.idxmin()
value = sr[name]
return pd.Series([value, name])
df[['Min_val','Min_col']] = df[['COL01','COL02','COL03','COL04']].apply(lambda x : get_col(x), axis=1)
df
ID COL01 COL02 COL03 COL04 Min_val Min_col
0 0001 NaN 1662 1583.0 1697.40 1583.0 COL03
1 0002 NaN 1006 1476.0 1018.44 1006.0 COL02
2 0003 1452.0 1487 2197.5 1516.27 1452.0 COL01
3 0004 NaN 1554 2298.0 1585.62 1554.0 COL02
Post a Comment for "Find Min Value Column And Min Value Column Name In Python DataFrame"