Visualizing A Decision Tree ( Example From Scikit-learn )
I'm a noob in using sciki-learn so please bear with me. I was going through the example: http://scikit-learn.org/stable/modules/tree.html#tree >>> from sklearn.datasets im
Solution 1:
Which OS do you run? Do you have graphviz
installed?
In your example, StringIO()
object, holds graphviz data, here is one way to check the data:
...
>>> print out.getvalue()
digraph Tree {
0 [label="X[2] <= 2.4500\nerror = 0.666667\nsamples = 150\nvalue = [ 50. 50. 50.]", shape="box"] ;
1 [label="error = 0.0000\nsamples = 50\nvalue = [ 50. 0. 0.]", shape="box"] ;
0 -> 1 ;
2 [label="X[3] <= 1.7500\nerror = 0.5\nsamples = 100\nvalue = [ 0. 50. 50.]", shape="box"] ;
0 -> 2 ;
3 [label="X[2] <= 4.9500\nerror = 0.168038\nsamples = 54\nvalue = [ 0. 49. 5.]", shape="box"] ;
2 -> 3 ;
4 [label="X[3] <= 1.6500\nerror = 0.0407986\nsamples = 48\nvalue = [ 0. 47. 1.]", shape="box"] ;
3 -> 4 ;
5 [label="error = 0.0000\nsamples = 47\nvalue = [ 0. 47. 0.]", shape="box"] ;
4 -> 5 ;
6 [label="error = 0.0000\nsamples = 1\nvalue = [ 0. 0. 1.]", shape="box"] ;
4 -> 6 ;
7 [label="X[3] <= 1.5500\nerror = 0.444444\nsamples = 6\nvalue = [ 0. 2. 4.]", shape="box"] ;
3 -> 7 ;
8 [label="error = 0.0000\nsamples = 3\nvalue = [ 0. 0. 3.]", shape="box"] ;
7 -> 8 ;
9 [label="X[0] <= 6.9500\nerror = 0.444444\nsamples = 3\nvalue = [ 0. 2. 1.]", shape="box"] ;
7 -> 9 ;
10 [label="error = 0.0000\nsamples = 2\nvalue = [ 0. 2. 0.]", shape="box"] ;
9 -> 10 ;
11 [label="error = 0.0000\nsamples = 1\nvalue = [ 0. 0. 1.]", shape="box"] ;
9 -> 11 ;
12 [label="X[2] <= 4.8500\nerror = 0.0425331\nsamples = 46\nvalue = [ 0. 1. 45.]", shape="box"] ;
2 -> 12 ;
13 [label="X[0] <= 5.9500\nerror = 0.444444\nsamples = 3\nvalue = [ 0. 1. 2.]", shape="box"] ;
12 -> 13 ;
14 [label="error = 0.0000\nsamples = 1\nvalue = [ 0. 1. 0.]", shape="box"] ;
13 -> 14 ;
15 [label="error = 0.0000\nsamples = 2\nvalue = [ 0. 0. 2.]", shape="box"] ;
13 -> 15 ;
16 [label="error = 0.0000\nsamples = 43\nvalue = [ 0. 0. 43.]", shape="box"] ;
12 -> 16 ;
}
you can write it as .dot file and produce image output, as showed in source you linked:
$ dot -Tpng tree.dot -o tree.png
(PNG format output)
Solution 2:
You were very close! Just do:
graph_from_dot_data(out.getvalue()).write_pdf("somefile.pdf")
Post a Comment for "Visualizing A Decision Tree ( Example From Scikit-learn )"